
Minr Scripts 2.0
SPECIFICATION

Minr

February 15, 2019

Contents

1 Introduction 4
1.1 Introduction . 4
1.2 Structure . 4
1.3 Notation . 5

2 Namespaces 6
2.1 The Namespace . 6
2.2 Using Namespaces . 7
2.3 Best Practice . 7

3 Variables 9
3.1 Types . 9

3.1.1 Built-in Types . 9
3.1.2 Literals . 10

3.2 Qualifiers . 11
3.3 Usage . 11
3.4 Null . 12

4 Expressions 13
4.1 The Expression . 13
4.2 Execution Order . 14
4.3 Short Circuit . 15
4.4 Syntax . 16

4.4.1 Define . 16
4.4.2 Var . 17
4.4.3 String Formatting . 17
4.4.4 Expression . 18

5 Scripts 20
5.1 Script Operators . 20

5.1.1 Command Operators . 20
5.1.2 Branching Operators . 21
5.1.3 Control Operators . 22
5.1.4 Variable Operators . 23
5.1.5 Chat Operators . 23

5.2 Anatomy of Scripts . 25
5.2.1 Script Types . 25

1

5.2.2 Lines . 26
5.2.3 Parameters . 26

5.3 Commands . 27
5.3.1 Action . 27
5.3.2 Type . 29

5.4 Hastebin . 31

6 Functions 34
6.1 The Function . 34

6.1.1 Parameters . 35
6.1.2 Return Type . 35

6.2 Syntax . 35
6.2.1 Definition . 36
6.2.2 Function Calls . 36

7 User defined Types 38
7.1 User defined Types . 38
7.2 Fields . 38
7.3 Methods . 39

7.3.1 This keyword . 40
7.4 Constructors . 40

8 Examples 42

9 Appendix 43
9.1 Built-in Namespaces . 43

9.1.1 system . 43
9.1.2 math . 43

9.2 Built-in Types . 44
9.2.1 String . 44
9.2.2 Int & Long . 47
9.2.3 Float & Double . 49
9.2.4 Boolean . 51
9.2.5 Player . 52
9.2.6 Entity . 58
9.2.7 Block . 59
9.2.8 Item . 61

9.3 Syntax . 63
9.3.1 Define . 63
9.3.2 Var . 63
9.3.3 String Formatting . 63
9.3.4 Expression . 64
9.3.5 Time . 64

2

9.4 Commands . 64
9.4.1 Namespace . 64
9.4.2 Variable . 65
9.4.3 Function . 65
9.4.4 User Types . 66
9.4.5 Script . 68

9.5 Scripts . 69
9.5.1 Script Actions . 69
9.5.2 Script Types . 70
9.5.3 Script Operators . 71

10 Version History 74

3

1 Introduction

A short introduction on the document and structure, including notation and practices
maintained within the document.

1.1 Introduction

Previous versions of the scripting language (Scriptblock, MSC 1) have shown that scripts
are extremely powerful and often simpler than command blocks. However, these versions
also had shortcomings. Scriptblock ended up being outdated, causing all interact scripts
to be fired twice upon interact, and some operators such as @delay and @cooldown could
break by a player logging out. To circumvent this, we developed a Minr-specific version,
Minr Scripts (MSC), which initially aimed to solve these issues. Since the codebase was
ours, we were able to add additional operators, features and more, which made scripting
even more powerful.

With this expansion of features the correct usage, functionality, shortcomings, bugs, and
dangers with implementing became obscured, causing unwanted behaviour in scripts and
confusion among scripters.

Additionally, variables were all globally stored, dynamically typed, and rather verbose
to manipulate (each operation takes one line). Scripts were unable to be reused, nor was
it easy to mass-edit a script, requiring third-party mods.

MSC 2 attempts to solve these shortcomings in variables and scripts by the addition
of typed variables, namespaces, functions, hastebin-based import and export of scripts,
and the addition of expressions in scripts, allowing for easier manipulation of variables.

This document attempts to clarify the features, shortcomings and dangers of MSC 2,
combined with good practice and examples of use cases.

1.2 Structure

MSC 2 contains a lot of new features. Additionally, to remain compatible with major
features and standards from MSC 1, many features of MSC 1 have been leveraged,
which means that the core concept of creating and editing scripts remains the same.

4

Each feature will be extensively handled in its own chapter, with the chapters slowly
building up the required knowledge.

For your first read it may be best to read from the top to bottom, because the document
is structured keeping this in mind. For future reference, the Appendix can be used,
which contains a summary of all tables, commands, functions, script operators, types,
and more features present in the current implementation of MSC 2. If you are unsure
how a specific element works, you can always refer back to the table of contents and
search it in the main document.

If you feel this document is missing important pieces of information, feel free to post on
discord or on the forums.

1.3 Notation

In examples and command definitions, arguments contain brackets or less than and
greater than signs. Arguments in brackets ([]) can be optionally defined. Arguments
between the less than and greater than signs (<>) are required.

For example:

/variable define <namespace> [qualifier [...]] <Type> <name> [= expression]

Requires the namespace, Type and name arguments, and optionally provides the qualifier
and = expression arguments. Any amount of qualifiers can be passed, indicated by the
[...].

Scripts are represented as:

@player Hello

@bypass /rocket

@if true

@player True

@else

@player False

The result of a script is represented as:

Hello

True

5

2 Namespaces

Namespaces are a way of separating project-specific variables, functions and types. In
previous versions, variables tended to cause collisions: frequently used names such as x
or y could not have different values in different scripts. Namespaces allow encapsulation
to prevent these collisions. A variable named x can coexist within multiple namespaces at
any given time, without causing a collision. Generally a namespace would encapsulate
a given project, a module within a project, or a logical module that can be reused in
different projects (such as the math namespace).

2.1 The Namespace

A namespace consists of variables, functions and types. A user can define a namespace
using a unique name. Within the namespace, variables can be defined to make them
usable within the namespace. These are the persistent variables and will be stored to
file.

Before being able to use a variable, function or type, they should be defined as element
of a namespace. The definition of the variable requires a type. Persistent variables have
to be defined in advance so that the compiler knows where to look and what type they
are. See Variables for more details.

When using variables, functions or types in a script, the script should know what names-
pace the variable, function or type is in. If the namespace is undefined, it automatically
defaults to the local namespace which contains variables that are not persistent. All
variables within the local namespace should therefore be defined locally (that is, within
the script). If using an undefined variable, the compiler will throw an error.

The local namespace is also present when using a specified namespace, and always takes
precedence over the specified namespace. Any variables defined within the local names-
pace will shadow - that is overrule - the variable in the specified namespace. This is to
make sure that an addition of a same-named variable in the namespace will not change
the functionality of the script. By explicitly accessing the namespace, as described in
Best Practice, you can still target the shadowed variable in the specified namespace, by
using the temporary namespace specifier (::).

The local namespace is created at the start of a script, and deleted when the script
terminates. Therefore the variables and types stored within the local namespace are not
persistent.

6

2.2 Using Namespaces

When a script starts, it starts out with the local namespace. Unless defined, the local
namespace contains no variables, and only the built-in functions and types.

A script can switch namespaces at any time using the @using script operation. Only
one namespace will be active at any time, with the exception of the local namespace,
which is always active and its variables always shadow the active namespace.

A variable or function can be temporarily accessed from a different namespace using the
namespace specifier. A variable can be accessed using namespace::variable, a function
using namespace::function(), and a type using namespace::Type.

Note that when executing a function, the function’s namespace will be used. Variables
can still be supplied from a different namespace through the parameters, and the function
can still access other variables using the @using operator and temporary namespace
specifier.

2.3 Best Practice

When using multiple variables, functions and/or types from one namespace, it is best to
use @using.

Sometimes it is required to use multiple namespaces at the same time, such as using a
variable from one namespace in a function of a different namespace. In this case you can
use @using for the most frequently used namespace, to limit unnecessary words and
characters.

When using a namespace once, it is best to use the temporary namespace specifier (::)
since adding additional lines would be less clear than adding the specifier.

It can occur that a variable with the same name is both defined in the namespace that
is currently set as @using, and in the local namespace (that is, earlier in the script). To
access the local variable, there is no need to (and you cannot) use a namespace specifier
to access the variable. To access the namespace variable, you are required to use the
temporary namespace specifier (::) to access the variable, because the local namespace
shadows the variable within the specified namespace, unless explicitly using the variable
from the namespace.

In general, it is best to use the most readable approach. @using is intended for repeated
usage, while :: is intended for one-time-use of namespaces.

7

Table 2.1: Summary of namespaces

None Uses the local namespace. Variables are not persistent and disappear
when the script is terminated.

@using Sets the current namespace and allows variables, functions and types
from this namespace to be used. Only one namespace can be enabled
at the same time. Local variables override namespace variables.

namespace:: Grabs the specified variable, function or type from the specified
namespace. Can be used at any given instance. Is not shadowed by
local variables due to the specificity.

8

3 Variables

Variables are the objects that can be adjusted to make a process behave differently. A
process without variables yields the same result every time. Variables have certain char-
acteristics defined by their type. The type defines what a variable can do and restricts
what variable can passed to functions. Variables can be manually set and/or changed
through operators.

3.1 Types

Variables do not have a strict feature set. They are simply name tags for a value, to
which a new value can be attached. The Type is what determines in what format the
value is stored and what operations can be performed on the value.

Whenever a variable is defined, the Type is always the word immediately preceding the
variable’s name. For example, the variable name defined as:

@define String name

has the type String (see Built-in Types for more information on the String type).

The type both represents how the variable can be instantiated and how it can be used.

3.1.1 Built-in Types

MSC 2 comes with a set of predefined types which can be used at any time from any
namespace. User defined types can build on top of these to further expand functionality,
or represent an entire different structure.

As of version 2.0, MSC contains:

9

Table 3.1: List of built-in-types

String Plain text. Commands passed to @bypass, @command, @console and
@player must be of this type.

Int A (signed) integer. Represents whole positive and negative numbers. Can
be used to define an amount among other things. Can represent values
from −231 through 231 − 1.

Long A (signed) integer. Represents more values than an Int can. Can
represent values from −263 through 263 − 1. Generally not necessary until
the Int does not suffice.

Float A single-precision floating point number. Can represent a wide range of
decimals (but sometimes suffers from being unable to represent a
number). Can be used for a lot of things.

Double A double-precision floating point number. Can represent a wider range of
decimals than Float can (but still not all). For general purposes, Float is
likely enough, but if it is not, Double can represent more precise state
when needed, such as when doing precise maths.

Boolean Can either be true or false. Used to keep track of conditions.

Player Represents the Minecraft Player. Contains a wide range of utility
functions and access to player statistics and variables. Can be used to
directly read and alter a Player state, to some extent.

Entity Represents a Minecraft Entity. Contains a wide range of utility functions
to read and alter the Entity state, to some extent.

Block Represents a Minecraft Block. Contains information about a block and
ways to alter it, to some extent.

For a more detailed list on what functions and variables each of these types expose, take
a look at the appendix: Built-in Types.

3.1.2 Literals

It may not always be preferable to first instantiate a variable and then pass it to a
function or operator. Sometimes it is useful to just add a constant number or pass a
constant piece of text to a function directly. For this reason literals are an option, serving
as a piece of text that is converted to the correct variable type.

10

Table 3.2: List of literals

String ”Content of the string” - text contained between two ” characters. If a
String has to contain a ” character, use the escape character: \. ”This is
in the string: \” ”

Int 1 - any integer.

Long 1L - an integer followed by L.

Float 1.0 - any decimal.

Double 1.0D - any decimal followed by D.

Boolean true or false.

Note that Block, Player and Entity have no literals. They always require constructors
to instantiate the state. User-defined types can be instantiated in the same way, taking
parameters as required.

3.2 Qualifiers

When defining a new type or namespace, sometimes it is useful to have variables that
are player relative, or a variable that has a constant value. Persistent variables can
be qualified by a qualifier keywords that determine their behaviour. Where the type
determines what can be done with the value of the variable, the qualifier determines
what properties the variable itself has. As of MSC 2.0 there are two qualifiers:

Table 3.3: List of qualifiers

final A constant variable. Once initialized cannot be changed. Useful for more
clear scripts, and makes changing values more maintainable.

relative A variable that is player-bound. This is MSC 2’s way of defining
per-player variables, rather than shared variables.

3.3 Usage

As described in the previous sections, variables consist of one or more qualifiers, a type
and a changeable value. Through commands, variables can be defined and operated
upon. The main commands are:

/variable define <namespace> [qualifier [...]] <Type> <name> [= expression]

/variable set <namespace> <name> = <expression>

In scripts this is can be written shorter by:

11

@define <Type> <name> [= expression]

and

@var [name =] <expression>

namespace is where you define which namespace is being altered.

[qualifier [...]] is where you define any amount of qualifiers. These are not present
in scripts because variables in scripts are not persistent.

Type is where you define the Type of the variable. The Type has to be an already
defined Type within the namespace. (If using an external type, use :: to indi-
cate the namespace it comes from). Type names always start with an uppercase
character.

name is where you define the name of the variable. Choose a descriptive name
that makes clear what the variable is used for. Variable names may not begin with
an uppercase character.

expression is how you first initialize the variable. Note that when using a final
variable, this field is required. Otherwise, this can be left blank, to initialize
the variable to their default state. (See Built-in Types for the default states of
each type). For user-defined variables this will be null. See Expressions for more
information on how to build an expression.

3.4 Null

Types that do not have a default state can sometimes be null. Null means multiple
things, taking the form of ’unrepresentable’, ’undefined’, and ’non-existent’. As became
apparent in the previous section a variable can be defined without expression, automati-
cally taking on the default state. User-defined variables do not have a default state, and
therefore automatically take the value null.

Some functions are unable to return a meaningful result. For example the Player()
constructor can only return a Player if the player exists. If the Player is not online, it
cannot return a meaningful result and thus returns null.

The reader should be aware that this case can occur. Performing operations on and
with null variables will cause the script to fail with a NullPointerException. It is wise
to keep track of the variables that can become null and script defensively. The Script
cannot make assumptions to what behaviour is wanted when the value is undefined, and
therefore it should always be explicitly stated.

12

4 Expressions

Expressions describe manipulations on variables with functions, operators and variables.
They follow a few rules, but can be completely freely made as seen fit to the context.
Expressions range from very short assignments to complex logic that can be stored or used
further in the script, or used to perform an action themselves. They are the foundation
of variables, giving the user many ways to manipulate and handle data.

4.1 The Expression

In the simplest sense, an expression is a piece of text that describes what to do. In
the context of scripts, expressions are used to perform actions (functions) or manipulate
variables (operators), or these two combined.

Expressions always evaluate toward one or no value. An expression ending in a function
call with no return type will result in no value. Other expressions will always result in
one value of a static type.

This static type can in turn be used in a different part of the expression, and so on.
They can also be stored in a variable of the correct type.

Some examples of simple expressions are:

@player {{5 + 5}}
@player {{10 / 5}}
@player {{"Hello" + "World"}}

10

2

HelloWorld

Expressions can also be chained or nested:

@player {{"Hello" + "World" + 5 + 5}}
@player {{(5 + 5) * (5 + 5)}}
@var player.setMaxHealth(5 + 5)

HelloWorld55

100

13

As described in Execution Order, some operators take precedence over others, such
as the * operator taking precedence over the + operator. If operators have the same
precedence, the expression is evaluated from left to right. The above example: ”Hello”
+ ”World” + 5 + 5 therefore evaluates to ”HelloWorld55”.

You may be confused why it is not ”HelloWorld10”. The + operators has equal prece-
dence whether it is used for a String or an Int. Reading left to right, first Hello and
World are concatenated by the + operator, then HelloWorld + 5 is evaluated, which re-
sults in HelloWorld5 (because String + Int = String), then HelloWorld5 + 5 is evaluated,
resulting in HelloWorld55.

Before a function is called, each of the parameters are first processed. This happens
the same way as a normal expression. Thus player.setMaxHealth(5 + 5) evaluates to
player.setMaxHealth(10) after which the function is successfully called.

Sometimes you may accidentally write an expression that does not work. For example,
you write:

@var Block(5, 5, 5, "Zero") + 5

Operator ’+’ is not applicable on types: Block, Int

Because Block has no + operator, this expression cannot complete, and will error. Some-
times this may be less apparent because of chained expressions. In general it is smart to
keep your expressions as simple as possible, often preferring the most readable solution.

4.2 Execution Order

Chained expressions have an execution order. You are probably used to this in maths
as well: * comes before +, but + and - happen at the same time (in our case from
left to the right). Expressions also follow these simple rules. The operators with higher
precedence are executed first, and operators with same precedence are executed left to
right.

Expressions have a few more operators than those generally used in maths however, and
we will list the execution order here. From top to bottom, top executes first, and bottom
executes last.

14

Table 4.1: Precedence of operators

() Parentheses around an expression prioritize this sub-expression.

! Negation of Booleans.

*, %, / Multiplication, modulo, division.

+, - Addition, concatenation and subtraction.

<, <=, >, >= Relational operators.

==, != Equality or non-equality.

&& Logical AND.

|| Logical OR.

= Assignment.

For example:

@player {{5 - 5 * 5}}
@player {{5 > 10 && 4 != 4 || 5 == 5}}

-20

true

The first one is fairly logical following basic math. The second may be harder to see
at first. Due to the operator precedences, the expression is evaluated as ((5 >10) &&
(4 != 4)) || (5 == 5). This in turn evaluates to ((false) && (false)) || (true), which
corresponds with false || true, which is true.

4.3 Short Circuit

In the case of the logical operators, the expression will short circuit whenever the ex-
pression has gathered enough info about the result. For example, assuming function()
returns a Boolean:

@var true || function()

will never execute function, because the first operand was already true.

One of the most important reasons for this feature is the usage in if statements:

@define String var

@if var != null && var.toLowerCase() == "this is a string"

@player Incorrect.

@else

@player Correct!

Correct!

15

It will never evaluate the right side of the logical AND, because the left side was already
false, saving you from a NullPointerException being thrown during the execution of the
script. This will save some lines of code to check if something is null, and almost always
results in predictable behaviour.

4.4 Syntax

Expressions follow fairly strict, but very logical syntax rules. We will list all syntax rules
here with examples. For a more summarized list, refer to Syntax.

4.4.1 Define

The syntax for the define operator and command is as follows:

[qualifiers [...]] <Type> <name> [= expression]

qualifiers can be any amount of qualifiers handled in Qualifiers. These always precede
the rest of the definition and are always in lowercase. The qualifiers are keywords and
can therefore not be used as a variable, function or type name. Qualifiers can only be
used on persistent variables, and therefore not in scripts.

Type is the type of the variable, which always starts with an uppercase character. This
makes it easier to distinguish the type from the variable and qualifiers.

name can be any word that is not a keyword or literal. The name can consist of the
following characters: a-z, A-Z, 0-9, . The name cannot start with a number, , or an
uppercase character.

expression has to be a valid expression resulting in a value of Type. See Expression.

@define String correctName = "5"

@player {{correctName}}
@define String 0invalidName

@define String InvalidName

@define InvalidType correctName

@define String true

@define String final

5

Variable does not start with a lowercase character: ’0’

Variable does not start with a lowercase character: ’I’

Type ’InvalidType’ could not be found in namespace local

Collision with a keyword: ’true’

Collision with a keyword: ’final’

16

/variable define namespace final String example = "Unchangeable."

@var namespace::example = "5"

Variable ’final String example = Unchangeable’ is declared final and

can therefore not be assigned a new value.

4.4.2 Var

The syntax for the var operator and command is as follows:

[name] <op> <expression>

name can be any predefined variable, or field that is available.

@define String example = "This is an example of good things."

@var example = "5"

@define String example = "This is an example of bad things."

@var undefined = "5"

Variable ’undefined’ could not be found in namespace local

op can be either ’=’ or any of the numerical operators followed by ’=’. The former case
sets the variable to the result of the expression, the latter case performs the operation
on the variable itself and the expression, and saves the result in the variable. Available
operators are: =, +=, -=, *=, /=, %=.

@define Int example = 5

@var example += 5

@player example

10

expression has to be a valid expression resulting in a value of the correct type. See
Expression.

4.4.3 String Formatting

The String literal supports a formatting context in which all expressions are allowed.
This is useful for both debugging and readability.

Within any String literal, an expression is started with a ’{{’ and closed with a ’}}’.
The resulting value is automatically converted to a String. If this is not possible, it will
result in an error.

17

@define String hello = "I can do math: {{5 + 5}}!"
@player {{hello}}

I can do math: 10!

4.4.4 Expression

The expression syntax allows any variables, literals and functions to be used.

Variables are just referred to by their name.

@define String name = "Hello"

@player {{name}}

Hello

Literals follow the syntax rules of their type.

@player {{"This is a literal."}}
@player {{true}}
@player {{5.0D}}

This is a literal

true

5.0

Function names are always immediately followed by an opening parenthesis ’(’, after
which the parameters come, separated by a comma, and closes with a ’)’. Functions
always start with a lowercase character to distinguish from a constructor.

@player {{"Hello".contains("e")}}

true

To chain variables, results of functions and literals, operators are required.

@player {{5 + (5 / 5)}}
@player {{!true}}
@player {{!(true && true)}}

6

false

false

The resulting type is decided by the last remaining object after all sub-expressions have
been evaluated, and has to fit the context. If any sub-expressions can not perform an

18

operation with an operator, or be assigned to a given type, the expression fails and an
error is thrown.

@define Int x = 5 + 5

@define String y = "5" + 5

@define Block z = Block(0, 0, 0, "Zero")

@player {{x}}
@player {{y}}
@player {{z}}
@player {{z + 5}}

10

55

0 0 0

Operator ’+’ is not applicable on types: Block, Int

19

5 Scripts

A script is an ordered list of script operations. A script will execute each script opera-
tion in succession to accomplish a certain objective. Within a script commands can be
executed, variables manipulated, game state manipulated, script flow can be controlled
and more. Scripts differ from functions in that they are triggered in specific situations,
while a function has to be called explicitly, from a script, command block or through a
command.

5.1 Script Operators

Every line within a script contains exactly one operator. The operator gives meaning
to the line, because it determines what has to be done with the arguments. There are
operators to execute commands, control the script flow and manipulate variables. Each
such type has a dedicated section. Additionally, a full summary is available in Script
Operators.

5.1.1 Command Operators

There are three operators to execute a command in a script: @command, @bypass and
@console.

@command <command>
Executes the command with the permissions of the player. A greenie can use /warp,
/rocket, while a whitie cannot. @command keeps in mind these differences in rank, and
executes a command normally as if it was typed in chat.

@bypass <command>
Elevates the permissions of a player to semi-admin rank. It allows the script to perform
all Minr admin commands and most Minecraft op commands (including specifiers @a,
@e, @p, @s, @r).

@console <command>
Executes the command from the console, which means all commands can be executed,
but it has the drawback of having to explicitly state the player, world, or sometimes not
being able to perform a command at all.

20

To prevent lag and potential server hiccups, all command operators introduce a one-tick
delay between their execution and the rest of the script. When a script or function uses
a substantial amount of commands, the script may take a while to execute (remember,
20 ticks is one second, so 20 commands already takes one second).

@command /say hi

@bypass /say hi

@console /say hi

Assuming a non-admin executes this script:

You do not have the permission to execute this command.

Machete: hi

Machete: hi

@command /rocket

@bypass /rocket

@console /rocket

Assuming a whitie or a blue executes this script:

You do not have the permission to execute this command.

You rocketed yourself.

Invalid command: missing player parameter.

5.1.2 Branching Operators

Sometimes a script needs to conditionally execute a part of the script. For this rea-
son we have branching operators, which provide ways to cause different execution flows
using variables. The branching operators can be nested, causing more and more pos-
sible execution paths. Be warned, as increasing the amount of execution paths greatly
complexifies the script.

@if <Boolean expression>
Takes an expression that evaluates to a Boolean. If the Boolean is true, the following
section is executed, if it is false, the section is skipped until reaching an @elseif, @else
or @fi of the same level.

@else
Executes the following section if the preceding @if and @elseif operators of the same
level were false.

@elseif <Boolean expression>
Executes the following section if the preceding @if and @elseif operators of the same
level were false, and the expression of this @elseif evaluates to true.

@fi

21

Ends the conditional section. Any @if, @else or @elseif operators of the same level will
no longer apply after this operator.

@return
Stops the execution of the current script or function, and optionally returns a value.

Because the branching operators can be nested, the script maintains an ’if level’ to
keep track of which @if has impact on which @else and @elseif operators. This level is
demonstrated visually through the use of indentation in both this document and any
script viewings (such as /scripts view).

@if true

@player 1

@return

@fi

@player 2

1

@if true

@if false

@player 1

@else

@player 2

@fi

@elseif true

@player 3

@else

@player 4

@fi

@player 5

2

5

5.1.3 Control Operators

There are also operators that provide control on the execution of a script.

@delay <time>
Allows an arbitrary delay in the midst of a script, making the rest of the script wait
with execution until the delay is over.

@cooldown <time>
Takes an arbitrary time that controls when the script can be re-executed by the same

22

player. If used in a function, a function will terminate the calling script when the function
is on cooldown.

@global cooldown <time>
Takes an arbitrary time that controls when the script can be executed again by any
player. If used in a function, a function will terminate the calling script when the
function is on cooldown.

@cancel
Disables the interaction between player and the object the script is bound to. Only has
effect in interact scripts and before any delays introduced by other operators (such as
@delay, the command operators and other halting operators).

Do note that any @cooldown and @global cooldown operators only have effect once they
are executed. Due to these constraints, @cancel, @cooldown and @global cooldown have
to be used before any delay because we cannot turn back time to stop an interaction
after it has already happened. Therefore an interaction should always be cancelled while
it is still happening, thus before any delays. Cooldowns are locked to the beginning in
order to ensure proper usage.

The time parameter is explained in Time.

5.1.4 Variable Operators

To simplify the definitions of local variables and altering of local and global variables,
MSC 2 introduces new operators that can readily alter the variable state.

@define <Type> <name> [= expression]
Defines a new variable and sets the value to an optionally defined expression. The
expression has to match the type of the variable. Refer to Define for more information
on the parameters.

@var [name =] <expression>
Executes an expression. This can be an assignment, function call, or any valid expression.
For more information, refer to Var.

@using <namespace>
Switches the namespace of lines following this line. For more information, refer to Using
Namespaces.

5.1.5 Chat Operators

To interface with the player chat, there are operators that send a message, send a
clickable message or store a player’s input in a variable.

23

@player <message>
Sends a message to the player. Supports color codes prefixed by &. Supports String
Formatting by using {{ and }}.

@chatscript <group> <time> <expression>
Binds a function to the first following @player script operation. The function can be
activated by the player at any time upon clicking the chat message.

Only one of the chatscripts in the same group can be executed. This means that when
binding a chatscript to multiple messages with the same group, only one chatscript can
be executed.

Once time runs out, the chatscript expires and the expression can no longer be executed
by clicking the text in chat. The chatscript also expires once the chatscript has been
executed once.

/function define example Void one()

/function define example Void two()

/function define example Void three()

/s c f example one @player one

/s c f example two @player two

/s c f example three @player three

@chatscript same example::one()

@player Option 1

@chatscript same example::two()

@player Option 2

@chatscript other example::three()

@player Option 3

Option 1

Option 2

Option 3

If the player clicks Option 1:

one

Then, if the player clicks Option 2:

Then, if the player clicks Option 3:

24

three

two was not displayed because it shares the same group with one, and since one was
already executed, two could no longer be executed. three was a separate group, and
therefore was able to be executed after one executed.

@prompt <time> <variable> [message]
Halts the script until the player types something. If time runs out, the script ends here,
sending the message the optional message, or ’Prompt expired’ otherwise. Message
supports color codes with &.

If the player types something in time, the text the player typed is stored in the passed
variable. Therefore, variable has to be of type String.

5.2 Anatomy of Scripts

5.2.1 Script Types

As mentioned before, scripts are triggered, while functions are explicitly called. Scripts
have to be bound to a block, entity, ground, or area in order to function. A script can
be triggered by walking over a block, interacting with an entity, entering an area, or
interacting with a block.

Each of these triggers come with a type.

interact
The interact script type triggers when the player interacts with a block (stone, button,
or anything else). There is no vanilla counterpart to this, except triggering a button or
causing a block update.

The interact script type is often used for passwords, submit buttons, NPC (wool-type)
dialogue, and much more.

walk
The walk script type triggers when the player walks over the block containing the script.
If the script was bound to a block that is now removed, the script still triggers when the
player is in the space just above the block.

The walk script type is often used for traps, story elements, resets, and much more.

ground
The ground script type triggers only when the player walks over the block containing
the script. It only triggers once the player is on the block, and not while jumping over
it, or when the block is air.

The ground script type can be used for crumbling pathways and other effects that require
the player to stand on the block.

25

entity
The entity script type triggers when a player interacts with an entity. The script gets
removed once the entity dies or despawns. When a script is applied to an entity, the
server tries its best to keep the entity from despawning, but sometimes the inevitable
occurs. Therefore, be prepared to respawn the entity with all scripts in place (by for
example creating a function that correctly restores the entity may it be missing, and
calling it whenever the entity is needed).

The entity script type is often used for dialogue.

area
The area script type is a new script type in MSC 2.0, triggering a script once when a
player enters the set area.

function
To create content in a function, the function type is used. A function is always explicitly
called from a script or other function. When adding script lines to a function, the
function has to be defined using the function command. See Function Commands for
details on defining a function

5.2.2 Lines

Every script consists of script lines, which are the actual content of the script. Each line
is prefixed with the Script Operator, described in Script Operators. The Script Operator
takes parameters that make up the rest of the script line.

A script is executed from top to bottom, waiting, delaying and executing commands as
necessary. A script may not execute fully when a @return operator is used. @return
cancels the script upon being run, halting further execution. Any resets should therefore
always be done before the script terminates.

Once a script starts, a local namespace is created. In this namespace temporary variables
can be declared using @define. Since the script executes from top to bottom, the script
cannot use a variable before it is defined. The local namespace of the script always
overrides the global namespace. Even if a used namespace contains a variable of the
same name as the local namespace, the variable in the local namespace will always be
used, unless a namespace specifier is used (::).

Once the script ends (due to a @return, expired @prompt or the end of the script), the
local namespace is deleted, including any variables stored in it.

5.2.3 Parameters

Alongside default types and variables, a script can also contain parameters. Script
Parameters are set by the ’system’. Parameters can be accessed much like any other

26

variable.

A script can have the following basic parameters (situationally, use /s v type to see which
ones are present):

player
A Player type. Represents the player executing the script. Is not present within func-
tions.

block
A Block type. Represents the block the script is bound to (if any). Is not present within
functions, entity scripts or area scripts.

entity
An Entity type. Represents the entity the script is bound to (if any). Is only present in
entity scripts.

5.3 Commands

The scripts command always has the following format:

/script <action> <type> [typeparameters] [actionparameters]

5.3.1 Action

A summarized version can be found in the appendix: Supported actions for script com-
mands

In this section, all <type> [typeparameters] are replaced by ... for easier overview. Do
note that the type is still required, and the type parameters come before the action
parameters.

action can be one of the following:

create ... [line] <@operator> <script>

Adds a line to the end of the script. When line is passed, it adds the line on the given
line number instead.

Example:

/script create interact @player hi!

@player hi!

27

/script create interact @player hi2!

@player hi!

@player hi2!

/script create interact 1 @player hi3!

@player hi3!

@player hi!

@player hi2!

view ...

View the lines of the script in chat.

Example: (viewing the script created above).

/script view interact

@player hi3!

@player hi!

@player hi2!

remove ... [line]

Remove the entire script. When line is passed, it removes only the line instead.

Example: (editing the script created above).

/script remove interact 1

@player hi!

@player hi2!

/script remove interact

info ...

List metadata and comments about the script.

28

export ...

Export the script to hastebin. (See Hastebin for more information).

import ... <id>

Import the script from hastebin. id is the identifier of your hastebin script, and should
be passed. (See Hastebin for more information).

copy

Copy all scripts in a World-Edit selected region to the players’ clipboard, relative to
player position.

paste <type>

Pastes all scripts of type previously copied to clipboard relative to player position.

wipe <type>

Removes all scripts of type in a World-Edit selected region.

count <type>

Counts all scripts of type in a World-Edit selected region.

undo

Undoes a previously executed Script command.

5.3.2 Type

Type is one of the triggers described in Script Types. Each type has their own set of
optional type parameters to select a block, entity, area or function. Some types also
support leaving this blank, allowing the player to interact with a block, entity or area
to define it afterwards.

29

interact [x y z] [world]

x y z are the coordinates the script should be bound to. world is the world in which the
block should be found. If world is undefined, it will take the player’s current world. If
x y z are undefined, the player will be asked to interact with a block to bind the script.

walk [x y z] [world]

x y z are the coordinates the script should be bound to. world is the world in which the
block should be found. If world is undefined, it will take the player’s current world. If
x y z are undefined, the player will be asked to interact with a block to bind the script.

ground [x y z] [world]

x y z are the coordinates the script should be bound to. world is the world in which the
block should be found. If world is undefined, it will take the player’s current world. If
x y z are undefined, the player will be asked to interact with a block to bind the script.

entity [uuid] [world]

uuid is the UUID of the entity the script should be bound to. world is the world in
which the entity should be found. If world is undefined, it will take the player’s current
world. If uuid is undefined, the player will be asked to interact with an entity to bind
the script. If no entity exists with the given UUID, the command will fail.

area [world] <region>

world is the world in which the block should be found. If world is undefined, it will take
the player’s current world. region is the WorldGuard region the script should be bound
to. The script is executed upon entering the region.

function <namespace> <function>

Binds the script to the corresponding function in namespace. If no such function exists
in the namespace, the command will fail.

method <namespace> <Type> <method>

Binds the script to the corresponding method in Type. If no such method exists, the
command will fail.

30

constructor <namespace> <Constructor Signature>

Binds the script to the corresponding constructor. The Constructor Signature serves to
distinguish multiple constructors with different signatures, such as:

String(Player)

String(Int)

These, while having the same type, have different signatures. To access these construc-
tors (note that built-in constructors cannot be edited), you would use the full definition,
in contrast to functions and methods, where only the name suffices.

5.4 Hastebin

Minecraft has a pretty terrible way of inputting scripts. There’s the option through chat,
but that gets unreadable fast, and does not support multiple lines. We could use books,
but they have limited horizontal space, which means most lines would wrap. Signs are
no option either. There must be a better way to type scripts, right?

MSC 2 supports hastebin, which is an online coding pastebin. You can write text, press
save, and a link will be generated that you can share with everyone. MSC 2.0 takes this
raw text line by line, and converts it to a script.

Script can be imported from hastebin using:

/script import ... <id>

and exported using

/script export ...

When you save your piece of text on hastebin, your URL will be appended by an identifier
(a few random characters). You should use this identifier as the id when importing.

Exporting will upload the current script to hastebin, after which you can clone and edit
the script, and import the edited script.

Hastebin uses automatically detected programming languages, resulting in MSC lines
being picked up as some programming language. Hastebin will automatically include
the programming language’s extension. Whether you include the extension, or even the
entire URL, or not, it will work regardless.

31

https://hastebin.com

Example

Figure 5.1: Write a script in hastebin

Figure 5.2: Save the script.

Figure 5.3: Find the identifier.

/script import interact eyovuwemoz

Figure 5.4: Run the import command, and press the block. That’s it!

Exporting a script is as easy as running

/script export interact

and clicking the block, after which a link to the hastebin will be generated. To edit this
script, you can press the edit button:

32

Figure 5.5: Click the edit button, and start editing. Then follow the instructions above
to import the script again.

33

6 Functions

Functions are a way to reuse scripts. They can take parameters that allow one function
to do many things, depending on the input. Functions can simply run preprogrammed
lines, but they can also return a value.

6.1 The Function

A function is a script that can be explicitly called at any point, but is never triggered
implicitly by the server. Because they are explicitly called, they can be called from
within another function, from within a script, or even triggered as a chatscript.

Functions take parameters, which allows them to do a similar operation on different
values, or simply change the operation when passed a different value.

Because it may be useful to grab a value from a type, convert a series of input variables
to a single output variable, or anything else you can come up with, functions can return
a value as well. Returning a value will allow the caller to store or use the result in a
different script or function, further allowing for re-usability. For this reason functions
have a return type, alongside parameter types. We will go a little more in depth later.

Functions are primarily meant to write parts of a script that is repetitive or can be used
somewhere else. They are also used to condense a long script into one call (such as the
use of functions in @chatscript).

Do keep in mind that functions are very much able to stall your script using @delay,
@prompt and similar script operations. Cooldowns (@cooldown and @global cooldown)
terminate the calling script with an error when the function is on cooldown.

The definition of a function looks like:

ReturnType functionname(Type_1 name_1, ..., Type_n name_n)

Them the syntax of calling this function is as follows:

functionname(parameter_1, ..., parameter_n)

The ReturnType is discussed in Return Type. The parameters are discussed in Param-
eters.

34

6.1.1 Parameters

Functions are optionally defined with a series of parameters. Each parameter acts as
a simple variable, but in reality they are a little more complex. A variable entering a
function is a pass-by-value, which means that changing the value of the parameter will
not change the value of the variable in the caller’s script. The values of the call are
copied over into the function, where they act as local variables.

Because they act as variables, they have to also be defined with a Type. However,
because they are not persistent variables, qualifiers have no impact and are therefore
not allowed.

Because they are copied over with value, variables with the relative qualifier will contain
the player’s value, the types passed will remain the same, and therefore any actions
on a player within the function will also succeed. The only difference between these
parameters and default (global) variables is that they do not change the value on the
label of the variables that the function was called with.

Variables passed to a function should always match the type of the definition. If this is
not the case, an error will occur.

6.1.2 Return Type

Functions can optionally return a value. The type of the value returned is governed by
the definition of the function. Any @return operators should therefore return a value
of the given type, and it is best practice to always explicitly return a value (or null).
Implicitly, the function will return null when no return value is defined.

When no type is passed, the function internally takes the type ’Void’, which is a type
that has no functions, no operators, no literals and no constructors. Thus, when a
function has no (or Void) return type, any expressions involving the function will fail,
unless the function is a standalone expression.

When the function does have a return type, it can be freely used in expressions following
the rules of the type. Functions are evaluated in the same order of expression rules, so
keep in mind that short circuiting can occur.

Returning is always done using the @return operator, which takes an optional expression.
The expression should always evaluate to the return type defined for the function, and
can be left empty if the return type is Void or not present.

6.2 Syntax

A function can either be a standalone function, or a function bound to a type (often
known as methods).

35

6.2.1 Definition

Functions are always defined with a name, parameter list and optionally a return type
in the following format:

ReturnType name(Type parameter1, Type parameter2, ..., Type parametern)

The amount of parameters is completely variable. It is possible to declare a function
without parameters by simply ending the declaration without defining any parameters:

ReturnType name()

When a function should merely perform an action, and should not result in a value,
ReturnType can be removed as well:

name()

Do note that when a function is defined without a return type, any @returns taking
variables will error, as it is probably a mistake.

In general, it is best to keep the amount of parameters within a reasonable range. Having
a large amount of parameters not only makes it hard to read, but may also be hard to
remember, document, and is often better split up into multiple functions. Some personal
judgment is required to see what fits the situation best.

6.2.2 Function Calls

The functions can be called as follows, assuming the function is in the currently used
namespace. Given a function called sum taking two arguments:

sum(parameter1, parameter2)

If the function is not in the current namespace, you can either use a different namespace
using @using, or using the local namespace specifier:

math::sum(parameter1, parameter2)

In a script situation, this can look like:

@define Int result = math::sum(1, 2)

@player {{result}}

3

Most types (such as String, Player, Block and Entity) provide functions. For example,
the function closeInventory() contained in the Player type can be called as follows:

36

@define Player player = Player("rickyboy320")

@var player.closeInventory()

37

7 User defined Types

User defined types are a way to reuse types. Common constructs can be grouped into
a type, and be used like any other type. This allows users to build abstraction layers
on top of the basic types, which should reduce overhead in scripting and greatly simplify
commonly used constructs.

7.1 User defined Types

User defined types combine most previously handled concepts and allow them to be
grouped together into a reusable type. A Type is defined in a Namespace, so that
name conflicts should not occur. A Type can contain fields (variables) and methods
(functions). The difference between a Namespace and a Type however, is that a Type
can be instantiated. There can exist multiple variables of any given Type at any given
moment. The values of the fields are not shared, unlike the Namespace. A Type can
also be used as a Function argument, and can itself be used as a field-Type for a Type.

Because the explanation uses quite a bit of jargon, let us be a bit more concrete by using
an example throughout this chapter. Say we find ourselves constantly using the variables
x, y and z together, we can decide to create a Type. For the sake of this chapter, we are
creating the Type Location.

Types are created using the type command:

/type define <namespace> <Type>

For example:

/type define world Location

7.2 Fields

A Type can contain fields. These are effectively variables, but are bound to a given
instance of the Type. Since a Type is merely a label of what a Variable can do, the Type
defines what the Variable contains as fields.

Our example Type should contain the fields x, y and z, because we want to unify these
three variables into one structure: the Location Type.

38

We can add these fields to a Type using the type command:

/type variable define <namespace> <Type> <Type> <name>

For example:

/type field define world Location Int x

will bind the newly made field Int x to the Type Location.

Fields can be accessed in expressions using a dot. For example, after having added x, y
and z in our Location example, we can use:

@using world

@define Location location = Location(5, 6, 7)

@player {{location.x}}
@player {{location.y}}
@player {{location.z}}

5

6

7

The first line is a constructor, which will be handled in Constructors. Assuming the
constructor is defined as Location(Int x, Int y, Int z) and sets these variables respectively,
the above will be the result.

We can also set fields of a type after the initial definition, by also using the dot.

@define Location location = Location(5, 5, 5)

@player {{location.x}}
@var location.x = 10

@player {{location.x}}

5

10

This allows retroactively changing the values of the variable.

7.3 Methods

As with Built-in Types, User defined Types can also contain Methods. The goal of these
methods generally has to do with the state of the Type. They are to manipulate the
instance, or give information about it.

They are defined using the /type command:

39

/type method define <namespace> <Type> <name>([Type name[, ...]])

For example, we can define the method getX() on the Location type as follows:

/type method define world Location Int getX()

To add lines to the body of this function, we use the script command:

/script create method world Location getX @return this.x

As with built-in types, these methods can be called on a type with the dot.

@define Location location = Location(5, 6, 7)

@player {{location.x}}
@player {{location.getX()}}

5

5

They work exactly the same as any other Function described in the Functions chapter,
except that they have access to the variables’ state directly, through the this keyword,
and that they have to be called on an instance.

7.3.1 This keyword

The this keyword is the handle to access the state of the current instance. Normally an
instance is constructed and acted upon as a value bound to a variable. However, as the
instance yourself, there is no way to access yourself using any other means, therefore the
this keyword exists.

In our example, if our Location Type needs a function that sets the current coordinates
to the given coordinates, the type needs to reference its own fields. This can be done
using the this keyword, so that the instance can manipulate itself.

7.4 Constructors

Constructors serve to build the initial state of an instance. For example, it would be
weird to have an uninitialized Location, since its fields would all be 0. We want to set up
a Location with the right coordinates out of the box, and not wait until it is instantiated.

We can achieve this using Constructors. As described with Built-in Types, the Player,
Entity and Block Types each have constructors to initialize the state. We can define
constructors on our built-in types as well, even allowing for multiple constructors with
different definitions (as also seen in Built-in Types).

40

A constructor is defined much like a Type:

/type constructor define <namespace> Type([Type name[, ...]])

For example, our Location constructor taking x, y and z:

/type constructor define world Location(Int x, Int y, Int z)

We can define an overloaded constructor with the same command:

/type constructor define world Location(Float x, Float y, Float z)

The constructors’ body can be defined with the Script command:

/script create constructor <namespace> <constructor signature> <script>

For example, our Location constructor:

/script create constructor world Location(Float, Float, Float) <script>

Clearly this is a bit verbose, so look at Hastebin for more information on how to simplify
definitions.

Constructors can be chained by using @return in the constructors’ body. Of course the
Constructor should return the type that is being constructed. @return can also be left
out, returning the currently constructed instance.

In constructors the this keyword can be used to access methods and fields of the instance.

41

8 Examples

To be filled in once we have a stable version.

42

9 Appendix

9.1 Built-in Namespaces

9.1.1 system

The system namespace handles all types of miscellaneous behaviour typically found in
the system, such as time.

Variables

The system namespace contains no variables.

Functions

Table 9.1: Supported Functions for the system namespace

Long currentTimeMillis() Returns the current time in milliseconds. Note that
while the unit of time of the return value is a
millisecond, the granularity of the value depends on
the underlying operating system and may be larger.
For example, many operating systems measure time
in units of tens of milliseconds.

9.1.2 math

The math namespace contains a series of common math operations.

Variables

The math namespace contains no variables.

43

Functions

Table 9.2: Supported Functions for the math namespace

Double sqrt(Double value) Returns the correctly rounded
positive square root of a double
value.

Double abs(Double value) Returns the absolute value of a
double value. If the argument is not
negative, the argument is returned.
If the argument is negative, the
negation of the argument is
returned.

Double pow(Double value, Double exponent) Returns the value of the first
argument raised to the power of the
second argument.

Int randomInt() Returns the next pseudorandom,
uniformly distributed Int value.

Long randomLong() Returns the next pseudorandom,
uniformly distributed Long value.

Float randomFloat() Returns the next pseudorandom,
uniformly distributed float value
between 0.0 and 1.0.

Double randomDouble() Returns the next pseudorandom,
uniformly distributed double value
between 0.0 and 1.0.

Double random(Double min, Double max) Returns the next pseudorandom,
uniformly distributed double value
between min and max.

Most of these functions have special cases with special arguments. View https://docs.

oracle.com/javase/10/docs/api/java/lang/Math.html for these cases.

9.2 Built-in Types

9.2.1 String

A String represents plain text. Any piece of text surrounded with ” is considered a
String. Script operators that take exactly one string (such as @player, @bypass, @con-
sole, @command) do not require this (for backwards compatibility and less clutter).

44

 https://docs.oracle.com/javase/10/docs/api/java/lang/Math.html
 https://docs.oracle.com/javase/10/docs/api/java/lang/Math.html

@player Hey

@player "Hey"

Hey

"Hey"

A String will be null when it is referenced before initialization.

Constructors

A string can be created in one of two ways. The first one is using the String literal, and
the other is the String constructor. The string literal is any piece of text surrounded with
”. If the String needs to contain a ”, use the backslash to escape the double quotation
marks, as follows: ”This is escaped: \”. Cool.”

The second way is through a constructor. Available constructors are:

Table 9.3: Supported constructors for the String type

String(String value) Clone a String.

String(Int value) Get the textual value of an Int.

String(Long value) Get the textual value of a Long.

String(Float value) Get the textual value of a Float.

String(Boolean value) Get the textual value of a Boolean.

String(Double value) Get the textual value of a Double.

String(Player value) Get the Player name in textual form.

String(Entity value) Get the Entity UUID in textual form.

String(Block value) Get the Block coordinates in textual form.

String(Item value) Get the Item in textual form.

The String literal has an additional property for easier formatting. Within the quotation
marks it supports string formatting using {{ and }}. Any expression or value represented
within these double curly brackets will be evaluated and converted to a String. If any
other type remains within the curly brackets, the appropriate constructor is automati-
cally called to convert it into a String, if any. Admins can use these curly brackets in
chat to quickly evaluate an expression (for example to see the contents of a variable).
Do keep in mind that expressions in chat will require the local namespace specifiers to
specify the namespace, as there is no @using in chat.

For example:

@player {{Player("rickyboy320")}}

45

rickyboy320

This works because the String(Player) constructor defaults to the player name in textual
form. Additionally, script operators that take exactly one string do not take quotation
marks.

(If required, {{ and }} can be escaped like the quotation marks, using a backslash: \)

Operators

Table 9.4: Supported operators for the String type

+

String Concatenates two Strings together.
Boolean Concatenates String and Boolean together, as if

the value were a string.
(”true” + true = ”truetrue”)

Int, Double, Float, Long Concatenates String and the textual value of the
other together.

Player Concatenates String and the name of the Player
together.

Entity Concatenates String and the UUID of the Entity
together.

Block Concatenates String and the coordinates of Block
together.

Item Concatenates String and Item together.

== String Checks for equality between Strings. This is
case-sensitive. For case-insensitive equality, use
.equalsIgnoreCase(). (Returns Boolean with the
result: true if equal).

!= String Checks for inequality between Strings. (Returns
Boolean with the result: true if not equal).

46

Methods

Table 9.5: Supported Methods for the String type

Boolean contains(String sequence) Returns true if the String contains
sequence, false otherwise.

Boolean equalsIgnoreCase(String other) Returns true if the String is equal
except for case to other, false otherwise.

Int indexOf(String sequence) Returns the index the first occurrence
of sequence starts at. If the String does
not contain sequence, returns -1.

String replace(String old, String new) Replaces all occurrences of old with
new in the String.

String substring(Int start, Int end) Returns a substring starting (inclusive)
at start and ending (exclusive) at end.
Throws IndexOutOfBoundsException
when start or end are invalid indices
within the string. Throws
InvalidParameterException when end
is smaller than start.

String toLowerCase() Returns the String in lowercase.

String toUpperCase() Returns the String in uppercase.

String trim() Returns the String with leading and
trailing whitespace omitted.

9.2.2 Int & Long

The Integer represents whole numbers (-1, 0, 1, 2, etc). Within a computing environment,
not all numbers can be represented.

The Java standard upholds a max Integer value of 231 − 1 and a minimum Integer
value of −231. Any number outside of this range will overflow, resulting in a sign flip
and counting the opposite way. Roughly said: 231 − 1 + 1 = −231 (note that this is
unsupported and can change at any time).

If you need to represent a discrete number outside of this range, you can use Long
instead. Long has a max value of 263 − 1 and a min value of −263.

Int and Long are recessive types. Any operation with a Float, Double or String will take
priority and converts the Int or Long to the correct type. The resulting type will always
be that of the operand. This is exactly why Integer division does not occur when using
a Double or Float as the operand.

An Int and Long will be 0 when it is referenced before initialization.

47

Constructors

Integers and Longs can be created in one of two ways. The first one is using the Int or
Long literal, and the other is a constructor.

The Int literal is any whole number: 1, 2, 4, 10, -5.

The Long literal is any whole number followed by L: 1L, 2L, 4L, 10L, -5L.

The second way is through a constructor. Available constructors are:

Table 9.6: Supported constructors for the Int and Long type

Int(Int value) Make an Int from another Int. (Clone operation)

Int(Long value) Cast a Long down to an Int. (Precision loss)

Int(Float value) Discard the decimals and convert a Float to Int.

Int(Double value) Discard the decimals and convert a Double to Int.

Int(String value) Attempt to parse a String into an Int. Only succeeds if the
entire String can be represented as an Int. Throws
NumberFormatException otherwise.

Long(Int value) Upcast an Int to a Long.

Long(Long value) Clone a Long.

Long(Float value) Discard the decimals and convert a Float to Long.

Long(Double value) Discard the decimals and convert a Double to Long.

Long(String value) Attempt to parse a String into an Long. Only succeeds if the
entire String can be represented as a Long. Throws
NumberFormatException otherwise.

48

Operators

Table 9.7: Supported operators for the Int and Long type

+
String Concatenates Int and String together, as if the

value were a string. (2 + ”2” = ”22”)
Int, Double, Float, Long Adds the value to the numerical value of the

operand.

- Int, Double, Float, Long Subtracts the operand value from the value.

* Int, Double, Float, Long Multiplies the value with the operand value.

/
Int, Long Integer divides the value and the operand.

(5/2 = 2)
Double, Float Divides the Integer value and the operand.

(5/2.0 = 2.5)

% Int, Double, Float, Long The modulo operation. Finds the remainder after
division. (5%2 = 1)

== Int, Double, Float, Long Returns whether this numerical value and the
other numerical value are exactly the same.

!= Int, Double, Float, Long Returns whether this numerical value and the
other numerical value are not exactly the same.

< Int, Double, Float, Long Returns whether this numerical value is less than
the other numerical value.

> Int, Double, Float, Long Returns whether this numerical value is more than
the other numerical value.

<= Int, Double, Float, Long Returns whether this numerical value is less than
or equal to the other numerical value.

>= Int, Double, Float, Long Returns whether this numerical value is more than
or equal to the other numerical value.

Methods

There are no methods contained in the Int and Long type.

9.2.3 Float & Double

The Float and Double represent decimal values (-0.1, 37.5, 42.0, etc.). Internally it uses
an interesting notation, a bit like the scientific notation to represent numbers. Because
of this way of representing the numbers (using a floating point), not all numbers are
represented as accurately. A Float and a Double can both represent a wider range of
values than the Integer or Long can, but not as precisely.

The Java standard upholds a max Float value of (2 − 2−23) · 2127 and a minimum

49

(positive) Float value of 2−149. All numbers that can be represented positively can also
be represented negatively (including 0!). Do note that not all numbers in the range of
the min and max value can be represented, and that there is more than often a case of
precision loss.

The Double type can represent numbers more accurately, maintaining a maximum value
of (2 − 2−52) · 21023 and a minimum value of 2−1074. It can represent numbers more
accurately than a Float, but can still have precision loss. In most cases this should not
pose a problem.

On top of overflowing, much like the Integer and Long types, the Float and Double
can also underflow. This occurs when it tries to represent a number between 0 and the
minimum positive (or negative) value. In most cases this should not be a problem.

An Float and Double will be 0.0 when it is referenced before initialization.

Constructors

Floats and Doubles can be created in one of two ways. The first one is using the Float
or Double literal, and the other is a constructor.

The Float literal is any decimal number: 1.0, 2.0, 4.0, 10.2342, -5.12.

The Double literal is any number followed by D: 1D, 2D, 4.0D, 10.2342D, -5.12D.

The second way is through a constructor. Available constructors are:

Table 9.8: Supported constructors for the Float and Double type

Float(Int value) Cast an Int to a Float.

Float(Long value) Cast a Long down to an Int. (Precision loss)

Float(Float value) Clone a Float.

Float(Double value) Cast a Double to a Float. (Precision loss)

Float(String value) Attempt to parse a String into an Float. Only succeeds if
the entire String can be represented as a Float. Throws
NumberFormatException otherwise.

Double(Int value) Cast an Int to a Double.

Double(Long value) Cast a Long to a Double.

Double(Float value) Upcast a Float to a Double.

Double(Double value) Clone a Double.

Double(String value) Attempt to parse a String into an Double. Only succeeds if
the entire String can be represented as a Double. Throws
NumberFormatException otherwise.

50

Operators

Table 9.9: Supported operators for the Float and Double type

+
String Concatenates Float and String together, as if the

value were a string. (2.0 + ”2” = ”2.02”)
Int, Double, Float, Long Adds the value to the numerical value of the

operand.

- Int, Double, Float, Long Subtracts the operand value from the value.

* Int, Double, Float, Long Multiplies the value with the operand value.

/ Int, Double, Float, Long Divides the value and the operand. (5.0/2 = 2.5)

% Int, Double, Float, Long The modulo operation. Finds the remainder after
division. (0.5%0.2 = 0.1)

== Int, Double, Float, Long Returns whether this numerical value and the
other numerical value are exactly the same.

!= Int, Double, Float, Long Returns whether this numerical value and the
other numerical value are not exactly the same.

< Int, Double, Float, Long Returns whether this numerical value is less than
the other numerical value.

> Int, Double, Float, Long Returns whether this numerical value is more than
the other numerical value.

<= Int, Double, Float, Long Returns whether this numerical value is less than
or equal to the other numerical value.

>= Int, Double, Float, Long Returns whether this numerical value is more than
or equal to the other numerical value.

Methods

There are no methods contained in the Float and Double type.

9.2.4 Boolean

The Boolean can either represent true or false. It is primarily used in branches (such
as @if, @elseif) or conditions. Booleans contain some additional operators to perform
boolean logic with.

A Boolean will be false when it is referenced before initialization.

Constructors

Booleans can be created in one of two ways. The first one is using the Boolean literal,
and the other is a constructor.

51

The Boolean literal is either true or false.

The second way is through a constructor. Available constructors are:

Table 9.10: Supported constructors for the Boolean type

Boolean(Boolean) Copy a Boolean.

Boolean(String) Parse true or false in string format to a boolean. Defaults to
false.

Operators

Table 9.11: Supported operators for the Boolean type

+ String Concatenates Boolean and String together, as if the value were a
string. (true + ”true” = ”truetrue”)

! (Prefix) Negates the boolean value. (!true = false)

&& Boolean ANDs the booleans together. Results in true only if both booleans
are true. (true&&true = true, true&&false =
false, false&&false = false)

|| Boolean ORs the booleans. Results in true when either boolean is true.
(true||true = true, true||false = true, false||false = false)

== Boolean Returns whether two Boolean values are the same (both true, or
both false).

!= Boolean Returns whether two Boolean values are not the same.

The logical operators && and || are short-circuiting. This means that when reading
from left to right, one of the operands causes the result to always be true or false, the
other operand is not evaluated. For example the expression

@if x != null && x.contains("blue")

will not throw a NullPointerException even if x is null, because the if statement short
circuits before it reaches the substring expression.

Methods

There are no methods contained in the Boolean type.

9.2.5 Player

The Player represents an (online) Minecraft Player. There are a multitude of things
you can accomplish through supported methods that are generally not directly available

52

through commands.

A Player will be null when it is referenced before initialization.

Constructors

Table 9.12: Supported constructors for the Player type

Player(String value) Construct a player from their name or
UUID. Null if the player does not exist.

Player(Int x, Int y, Int z, String world) Find a player at these coordinates in the
passed world. Null if the player does not
exist. In the scenario that multiple Players
are in the same location,
nondeterministically returns one Player at
that location.

Operators

Table 9.13: Supported operators for the Player type

+ String Concatenates the name of Player and String together.

== Player Checks for equality between Players. (Returns true when the players
are the same player).

!= Player Checks for inequality between Players. (Returns true when the
players are not the same player).

53

Methods

Table 9.14: Supported Methods for the Player type

Float getFallDistance() Returns the distance this entity has fallen.

Int getFireTicks() Returns the entity’s current fire ticks (ticks before
the entity stops being on fire).

setFireTicks(Int ticks) Sets the entity’s current fire ticks (ticks before the
entity stops being on fire).

Double getX() Gets the entity’s current x position.

Double getY() Gets the entity’s current y position.

Double getZ() Gets the entity’s current z position.

Float getYaw() Gets the entity’s current rotation around the y axis.

Float getPitch() Gets the entity’s current rotation around the x axis.

Double getVelocityX() Gets the entity’s current velocity in the x direction.

Double getVelocityY() Gets the entity’s current velocity in the x direction.

Double getVelocityZ() Gets the entity’s current velocity in the x direction.

String getWorld() Gets the current world this entity resides in.

Boolean isDead() Returns true if this entity has been marked for
removal.

Boolean isFlying() Checks to see if this player is currently flying or not.

Boolean isOnGround() Returns true if the entity is supported by a block.
This value is a state updated by the server and is
not recalculated unless the entity moves.

Boolean isSneaking() Returns if the player is in sneak mode.

Boolean isSprinting() Gets whether the player is sprinting or not.

giveExp(Int amount) Gives the player the amount of experience specified.

Float getExp() Gets the players current experience points towards
the next level.

setExp(Float exp) Sets the players current experience points towards
the next level.

giveExpLevels(Int amount) Gives the player the amount of experience levels
specified. Levels can be taken by specifying a
negative amount.

Float getLevel() Gets the players current experience level.

setLevel(Int level) Sets the players current experience level.

54

Table 9.15: Supported Methods for the Player type (continued)

damage(Double amount) Deals the given amount of damage to
this entity.

Double getHealth() Gets the entity’s health from 0 to
getMaxHealth(), where 0 is dead.

setHealth(Double health) Sets the entity’s health from 0 to
getMaxHealth(), where 0 is dead.
Throws IllegalArgumentException if
the health is < 0 or >
getMaxHealth().

Double getMaxHealth() Gets the maximum health this entity
has.

setMaxHealth() Sets the maximum health this entity
has. If the health of the entity is
above the value provided it will be
clamped to the max value. Only sets
the ’base’ max health value, any
modifiers changing this value (potions,
etc) will apply after this value. The
value returned by getMaxHealth may
deviate from the value set here.

Float getFoodLevel() Gets the players current food level.

setFoodLevel(Int value) Sets the players current food level.

Float getSaturation() Gets the players current saturation
level. Saturation is a buffer for food
level. Your food level will not drop if
you are saturated ¿ 0.

setSaturation(Float value) Sets the players current saturation
level.

Boolean isInsideVehicle() Returns whether this entity is inside a
vehicle.

Boolean leaveVehicle() Leave the current vehicle. If the entity
is currently in a vehicle (and is
removed from it), true will be
returned, otherwise false will be
returned.

closeInventory() Force-closes the currently open
inventory view for this player, if any.

Long getTimePlayed() Gets the player’s playtime on the
server in milliseconds.

String getLocale() Gets the player’s current locale. The
value of the locale String is not
defined properly. The vanilla
Minecraft client will use lowercase
language / country pairs separated by
an underscore, but custom resource
packs may use any format they wish.

String getUniqueId() Gets the UUID of the entity (in string
format).

Boolean isOnline() Checks if this player is currently
online.

Boolean isOp() Checks if this Player is a server
operator.

setResourcePack(String url, String hash) Request that the player’s client
downloads and switches resource
packs.

55

Table 9.16: Supported Methods for the Player type (continued)

Item getItem(Int slot) Returns the Item found in the slot at the given
index.

Item getItemInMainHand() Gets a copy of the item the player is currently
holding in their main hand.

Item getItemInOffHand() Gets a copy of the item the player is currently
holding in their off hand.

Item getBoots() Return the Item from the boots slot.

Item getLeggings() Return the Item from the leg slot.

Item getChestplate() Return the Item from the chestplate slot.

Item getHelmet() Return the Item from the helmet slot.

setItem(Int slot, Item item) Stores the Item at the given index of the
inventory. Indexes 0 through 8 refer to the
hotbar. 9 through 35 refer to the main
inventory, counting up from 9 at the top left
corner of the inventory, moving to the right,
and moving to the row below it back on the
left side when it reaches the end of the row. It
follows the same path in the inventory like you
would read a book. Indexes 36 through 39
refer to the armor slots. Though you can set
armor with this method using these indexes,
you are encouraged to use the provided
methods for those slots. If you attempt to use
this method with an index less than 0 or
greater than 39, an ArrayIndexOutOfBounds
exception will be thrown.

setItemInMainHand(Item item) Sets the item the player is holding in their
main hand.

setItemInOffHand(Item item) Sets the item the player is holding in their off
hand.

setBoots(Item item) Put the given Item into the boots slot. This
does not check if the Item is a boots.

setLeggings(Item item) Put the given Item into the leg slot. This does
not check if the Item is a pair of leggings.

setChestplate(Item item) Put the given Item into the chestplate slot.
This does not check if the Item is a chestplate.

setHelmet(Item item) Put the given Item into the helmet slot. This
does not check if the Item is a helmet.

56

Table 9.17: Supported Methods for the Player type (continued)

Boolean isPlayingChallenge() Returns whether the
player is playing a
challenge.

String getCurrentChallenge() Returns the challenge
the player is playing.
Returns null when
player is not playing any
challenge.

Int getChallengePoints() Returns the amount of
challenge points the
player has.

Int getHexaRecord() Returns the stage the
player reached in hexa.

Boolean hasCompletedChallenge(String challengetag) Returns whether the
player has completed the
specified challenge.

Long getChallengeTime() Returns the current time
the player has spent in
the challenge.

Boolean isPlayingMap() Returns whether the
player is playing a map.

String getCurrentCheckpoint() Returns the checkpoint
the player has. Returns
null when no checkpoint
in the current checkpoint
mode is set. Returns the
checkpoint from the
current checkpoint mode
(HC or FFA).

Int getPoints() Returns the amount of
FFA points the player
has.

Int getGlobalPoints() Returns the amount of
global points the player
has.

Boolean hasCompletedMap(String maptag) Returns whether the
player has completed the
specified map.

Long getMapTime() Returns the current time
the player has spent in
the map.

Int getAttempts() Get the amount of times
a player has hit any
starting checkpoint sign.

invalidate() Invalidate the player’s
challenge and map run.

invalidateTime() Invalidate the player’s
time on map and
challenge, but allows
them to complete the
map and challenge.

57

9.2.6 Entity

An Entity is a move-able or dynamic object in the Minecraft world. Animals and mon-
sters are Entities, but also arrows, item frames and paintings.

An Entity will be null when it is referenced before initialization.

Constructors

Table 9.18: Supported constructors for the Entity type

Entity(String uuid) Construct an entity from its UUID.
Returns null if it does not exist.

Entity(Int x, Int y, Int z, String world) Find an entity in the passed world at these
coordinates. Returns null if it does not
exist. In the scenario that multiple entities
are in the same location,
nondeterministically returns any entity.

Operators

Table 9.19: Supported operators for the Entity type

+ String Concatenates the UUID of Entity and String together.

== Entity Checks for equality between Entities. (Returns true when the entities
are the same entity).

!= Entity Checks for inequality between Entities. (Returns true when the
entities are not the same entity).

58

Methods

Table 9.20: Supported Methods for the Entity type

String getEntityType() Gets the entity’s type. Actual value returned is a
’magic value’ and can change at any spigot or bukkit
update.

Double getX() Gets the entity’s current x position.

Double getY() Gets the entity’s current y position.

Double getZ() Gets the entity’s current z position.

Float getYaw() Gets the entity’s current rotation around the y axis.

Float getPitch() Gets the entity’s current rotation around the x axis.

Double getVelocityX() Gets the entity’s current velocity in the x direction.

Double getVelocityY() Gets the entity’s current velocity in the x direction.

Double getVelocityZ() Gets the entity’s current velocity in the x direction.

String getWorld() Gets the current world this entity resides in.

Boolean isDead() Returns true if this entity has been marked for removal.

Boolean isOnGround() Returns true if the entity is supported by a block. This
value is a state updated by the server and is not
recalculated unless the entity moves.

damage(Double amount) Deals the given amount of damage to this entity.

Double getHealth() Gets the entity’s health from 0 to getMaxHealth(),
where 0 is dead.

setHealth(Double health) Sets the entity’s health from 0 to getMaxHealth(),
where 0 is dead. Throws IllegalArgumentException if
the health is ¡ 0 or ¿ getMaxHealth().

Double getMaxHealth() Gets the maximum health this entity has.

setMaxHealth() Sets the maximum health this entity has. If the health
of the entity is above the value provided it will be set
to that value.

String getUniqueId() Gets the UUID of the entity (in string format).

9.2.7 Block

A Block represents a Block in the Minecraft world. Any valid block (within reasonable
bounds, 0 ≤ y ≤ 255) can be represented, whether it is an empty (air) block, liquid, or
a solid block.

A Block will be null when it is referenced before initialization.

59

Constructors

Table 9.21: Supported constructors for the Block type

Block(Int x, Int y, Int z, String world) Get the block at these coordinates in the
given world.

Operators

Table 9.22: Supported operators for the Block type

+ String Concatenates the coordinates of Block and String together.

== Block Checks for equality between Blocks. (Returns true when the blocks
are the same block).

!= Block Checks for inequality between Blocks. (Returns true when the blocks
are not the same block).

60

Methods

Table 9.23: Supported Methods for the Block type

Int getBlockPower() Returns the Redstone power
being provided to this block.

Int getLightLevel(() Returns the amount of light
at this block.

Int getLightFromBlocks() Returns the amount of light
at this block from nearby
blocks.

Int getLightFromSky() Returns the amount of light
at this block from the sky.

Block getRelative(Int modX, Int modY, Int modZ) Gets the block at the given
offsets.

String getBlockType() Gets the type of this block.
Actual value returned is a
’magic value’ and can change
at any spigot or bukkit
update.

Int getX() Returns the x-coordinate of
this block.

Int getY() Returns the y-coordinate of
this block.

Int getZ() Returns the z-coordinate of
this block.

String getWorld() Returns the world where this
block resides in.

Boolean isBlockIndirectlyPowered() Returns true if the block is
being indirectly powered by
Redstone.

Boolean isBlockPowered() Returns true if the block is
being powered by Redstone.

Boolean isEmpty() Returns true if this block is
Air.

Boolean isLiquid() Returns true if this block is
liquid.

9.2.8 Item

An Item represents an Item in the Minecraft world. Any valid item can be represented,
along with the stack size.

61

An Item will be null when it is referenced before initialization.

Constructors

Table 9.24: Supported constructors for the Item type

Item(String item, Int amount) Create an item from the passed name with a stack
size of amount. Throws
MaterialNotFoundException when passed an
invalid name.

Operators

Table 9.25: Supported operators for the Item type

+ String Concatenates the Item and String together.

== Item Checks for equality between Items. (Returns true when the items
match and the stack size is equal).

!= Item Checks for inequality between Items. (Returns true when the blocks
are not the same, and/or the stack size is unequal).

Methods

Table 9.26: Supported Methods for the Item type

Int getAmount() Gets the amount of items in this stack.

String getItemType() Gets the type of this item.

Int getMaxStackSize() Get the maximum stacksize for the material hold in
this ItemStack. (Returns -1 if it has no idea).

setAmount(Int amount) Sets the amount of items in this stack.

setItemType(String item) Sets the type of this item. Note that in doing so
you will reset the extra data for this stack as well.
Throws MaterialNotFoundException when passed
an invalid name.

Boolean isSimilar(Item item) Returns whether two items are equal, but does not
consider stack size (amount).

62

9.3 Syntax

9.3.1 Define

The syntax for the define operator and command is as follows:

[qualifiers [...]] <Type> <name> [= expression]

qualifiers can be any amount of qualifiers handled in Qualifiers. These always precede
the rest of the definition and are always in lowercase. The qualifiers are keywords and
can therefore not be used as a variable, function or type name. Qualifiers only work on
persistent variables and can therefore not be used in scripts.

Type is the type of the variable, which always starts with an uppercase character. This
makes it easier to distinguish the type from the variable and qualifiers.

name can be any word that is not a keyword or literal. The name can consist of the
following characters: a-z, A-Z, 0-9, . The name cannot start with a number, , or an
uppercase character.

expression has to be a valid expression resulting in a value of Type. See Expression.

9.3.2 Var

The syntax for the var operator and command is as follows:

[name] <op> <expression>

name can be any predefined variable or field that is available.

op can be either ’=’ or any of the numerical operators followed by ’=’. The former case
sets the variable to the result of the expression, the latter case performs the operation
on the variable itself and the expression, and saves the result in the variable. Available
numerical operators are: =, +=, -=, *=, /=, %=.

expression has to be a valid expression resulting in a value of the correct type. See
Expression.

9.3.3 String Formatting

The String literal supports a formatting context in which all expressions are allowed.
This is useful for both debugging and readability.

Within any String literal, an expression is started with a ’{{’ and closed with a ’}}’.
The resulting value is automatically converted to a String. If this is not possible, it will
result in an error.

63

9.3.4 Expression

The expression syntax allows any variables, literals and functions to be used. Variables
are just referred to by their name. Literals follow the syntax rules of their type. Func-
tions are always immediately followed by an opening parenthesis ’(’, after which the
parameters come, separated by a comma, and closes with a ’)’. Fields and methods are
accessed from an instance by using a ’.’.

To chain variables, results of functions and literals, operators are required.

The resulting type is decided by the last remaining object after all sub-expressions have
been evaluated, and has to fit the context. If any sub-expressions can not perform an
operation with an operator, or be assigned to a given type, the expression fails and an
error is thrown.

9.3.5 Time

Some operators and commands take a time parameter. The parameter is the same as in
a temporary /ban command: <amount>[s/m/h/d/w].

amount decides the amount of the unit that is used.

The unit can either be blank, s, m, h, d, or w. A blank unit means ticks, that is 1/20 of
a second. s means seconds, m means minutes, h means hours, d means days, w means
weeks.

Thus 5d means 5 days, 10 means 10 ticks, 7h means 7 hours, and so on.

9.4 Commands

9.4.1 Namespace

The parent command is /namespace. All subcommands in the table below will start
with this parent command.

64

Table 9.27: Namespace Commands

define <name> Define a new namespace with label/name name.

remove <name> Delete a namespace and all variables and functions attached to
it.

info <name> View metadata about a namespace.

variables
<name>

View the definitions and current values of variables in this
namespace.

functions
<name>

View the definitions of the functions in this namespace.

types <name> View the types defined in this namespace

9.4.2 Variable

The parent command is /variable. Possible aliases: /var. All subcommands in the table
below will start with this parent command.

Table 9.28: Variable Commands

define <namespace>
[qualifiers [...]]
<Type> <name> [=
expression]

Define a new variable with optional qualifiers, a given
name and Type and a possible initial value, supplied by
the expression. The expression should resolve to the Type
parameter.

remove <namespace>
<name>

Delete a variable definition.

set <namespace>
<name> <=
expression>

Set a variable to the result of an expression. The
expression should resolve to the Type of the variable, or
null.

info <name> View metadata about a variable.

9.4.3 Function

The parent command is /function. Aliases: /func. All subcommands in the table below
will start with this parent command.

65

Table 9.29: Function Commands

define <namespace>
[ReturnType]
<functionName([Type
name[, ...]])>

Define a function in namespace returning a value of the
type ReturnType (Void if empty). The function has the
name functionName and takes any amount of
parameters, defined in sets of Type name. Type defines
the type of the parameter and name defines the name on
which the variable can be addressed. Fails when a
function with functionName already exists in the
namespace.

remove <namespace>
<functionName>

Delete a function definition in a given namespace. This
removes the attached scripts.

redefine <namespace>
[ReturnType]
<functionName([Type
name[, ...]])>

Redefine a function. This keeps the associated script, but
allows changing the calling parameters or the return type.
Will fail when functionName has not been defined yet.

info <name> View metadata about a function.

9.4.4 User Types

The parent command is /type. All subcommands in the table below start with this
parent command. The method and field subcommands have their own tables.

Table 9.30: Type Commands

define
<namespace>
<Type>

Define a new Type in the namespace. Should start with an
uppercase character, contain no spaces and only alphanumeric
characters.

remove
<namespace>
<Type>

Deletes a Type, with its associated fields and methods.

info
<namespace>
<Type>

View metadata about a type.

fields
<namespace>
<Type>

Display a list of all fields in this Type.

methods
<namespace>
<Type>

Displays a list of all methods in this Type. Since built-in types
are part of every namespace, a built-in type can be inspected
too.

constructors
<namespace>
<Type>

Displays a list of all constructors in this Type. Since built-in
types are part of every namespace, a built-in type can be
inspected too.

66

Fields

The parent command is /type field. All subcommands in this table start with this parent
command.

Table 9.31: Field Commands

define <namespace>
<Type> <Type>
<name>

Define a field for Type. The field has the given Type and
name. Fails when a field with the same name already exists
in the type.

remove <namespace>
<Type> <name>

Delete a field in Type with the given name.

info <namespace>
<Type> <name>

View metadata about a field.

Methods

The parent command is /type method. All subcommands in this table start with this
parent command.

Table 9.32: Method Commands

define <namespace>
<Type> <ReturnType>
methodName([Type
name[, ...]])>

Define a method in Type returning a value of the type
ReturnType. The method has the name methodName
and takes the specified amount of parameters, defined
in sets of Type name. Type defines the type of the
parameter and name defines the name on which the
variable can be addressed. Fails when a function with
methodName already exists in the type.

remove <namespace>
<Type> <methodName>

Delete a method definition in a given Type. This
removes the attached scripts.

redefine <namespace>
<Type> [ReturnType]
<methodName([Type
name[, ...]])>

Redefine a method. This keeps the associated script,
but allows to change the calling parameters or the
return type. Will fail when methodName has not been
defined yet.

info <name> View metadata about a method.

Constructors

The parent command is /type constructor. All subcommands in this table start with
this parent command.

67

Table 9.33: Constructor Commands

define
<namespace>
Type([Type
name[, ...]])

Define a constructor for Type. The constructor takes the
specified amount of parameters, defined in sets of Type name.
Type defines the type of the parameter and name defines the
name on which the variable can be addressed. Fails when a
constructor with the same parameter signature already exists in
the type.

remove
<namespace>
Type([Type
name[, ...]])

Delete the constructor with the given parameter signature in the
associated Type. This removes the attached scripts.

info
<namespace>
Type([Type
name[, ...]])

View metadata about a constructor.

9.4.5 Script

The script command has the following syntax:

/script <action> <type> [typeparameters] [actionparameters]

action and [actionparameters] are defined in Supported actions for script commands.
type and [typeparameters] are defined in Supported Script types. Script operators that
can be used in script lines are defined in Script Operators.

68

9.5 Scripts

9.5.1 Script Actions

Table 9.34: Supported actions for script commands

create ... [line] Add a line to the end of the script. When line is passed, it adds
the line on the given line number instead.

view ... View the lines of the script in chat.

remove ... [line] Remove the entire script or a given line.

info ... List metadata and comments about the script.

export ... Export the script to hastebin. (See Hastebin for more
information).

import ... <id> Import the script from hastebin. id is the identifier of your
hastebin script, and must be passed. (See Hastebin for more
information).

copy Copies all scripts in a WorldEdit selected area to the players
clipboard, relative to the position of the player. Scripts in the
copied area that are removed or not present upon pasting, will
not be pasted.

wipe <type> Removes all scripts of the given script type in a WorldEdit
selected area.

paste <type> Pastes all scripts of the given script type relative to the new
location. (Offsets are calculated from the copy position and then
reapplied from the new position).

count <type> Counts the amount of scripts of the given script type in the
WorldEdit selected area.

undo Undos the last script creation, removal, edit, import or export.
Currently not supported for any commands involving Functions,
Constructors or Methods. Stores up to 10 actions.

69

9.5.2 Script Types

Table 9.35: Supported Script types

interact [x y z] [world] Binds to a script triggered
when the player interacts
with a block. Optionally
attached to x, y, z in world.

walk [x y z] [world] Binds to a script triggered
when the player walks over a
block. Optionally attached
to x, y, z in world.

ground [x y z] [world] Binds to a script triggered
when the player is on the
ground. Optionally attached
to x, y, z in world.

entity [uuid] [world] Binds to a script triggered
when the player interacts
with an entity. Script is
removed once the entity dies.
Optionally attached to a
specific UUID in world.

area <region> Binds to a script triggered
once when a player enters an
area. Attached to a
WorldGuard region.

function <namespace> <function> Binds to a function explicitly
called from within other
scripts or expressions.

method <namespace> <Type> <method> Binds to a method explicitly
called with an instance of
Type.

constructor <namespace> <Constructor Signature> Binds to a constructor
explicitly called when
constructing an instance.
Constructor Signature serves
to distinguish multiple
constructors with different
signatures.

70

9.5.3 Script Operators

Table 9.36: Command Script operators

@command <command> Execute a command as the player. Can only execute the
commands the player can also execute.

@bypass <command> Execute a command as the player in an elevated
position. Allows the execution of most admin
commands.

@console <command> Execute a command as the console. Allows the
execution of all admin commands, but not those relative
to the player.

Table 9.37: Chat Script operators

@chatscript <group> <time> <function> Binds a function to the following
@player message. When the message is
clicked in chat, it will be executed.
Chatscript runs out when time runs
out, or if a chatscript of group was
already clicked.

@player <message> Sends a message to the player in chat.
Supports color codes prefixed with the
character ’&’.

@prompt <time> <variable> [message] Stores the next message the player
types in chat in the variable. Prompt
ends when time runs out, with the
given optional message. Defaults to
Prompt expired. Message supports
color codes with &.

71

Table 9.38: Variable Script operators

@using <namespace> Sets the namespace for the following
lines. The script can then use the
variables and functions from the
namespace. Note that the variables in
the local namespace will always override
variables from an @using namespace.

@define <Type> <name> [= expression] Defines a variable in the local
namespace.

@var [name =] <expression> Performs an expression or assigns a
variable to the result of an expression.

Table 9.39: Control Script operators

@delay <time> Delays the execution of the rest of the script by a
specified amount.

@cooldown <time> Disallows the executor to re-execute the script for a
specified amount of time. When used in functions,
terminates the calling script when the function is on
cooldown.

@global cooldown <time> Disallows all players to execute the script for a specified
amount of time. When used in functions, terminates
the calling script when the function is on cooldown.

@cancel Cancels the interaction between player and the object
the script is bound to. Only has effect before any
@delay, @prompt, @command, @console or @bypass
lines.

@return [expression] Stops the execution of the current script/function, and
optionally returns a value, if required.

Table 9.40: Branching Script operators

@if <expression> Conditionally evaluate the following section of the script if
the operand is (or evaluates to) true.

@else Evaluate the following section of the script if the preceding
@if was false.

@elseif <expression> Conditionally evaluate the following section of the script if
the preceding @if was false, and the operand is (or evaluates
to) true.

@fi Ends a conditional section.

72

Table 9.41: Misc Script operators

@undefined No operation. May sometimes appear on legacy scripts. Can be used
as a comment for complex lines or scripts.

73

10 Version History

2.0

Additions

Namespaces

Grouping variables and functions so that variables with the same names over different
projects do not clash.

User Types

Players can define their own variable Types, including constructors, methods and fields.
This also supports the this keyword to select the current instance.

Qualifiers

To support strict variables and still support per-player variables, qualifiers were intro-
duced. The two available qualifiers currently are: relative and final.

Null

To support the absence of a value (due to failed computation or other), null is supported
as a substitute for a variable on unambiguous functions, or as the value of a variable.

Expressions

To allow multiple operations on one line (and not separate lines as was previously the case
in MSC 1.0), full expression support was added to provide easier operations, function
calls, assignment and more.

74

Functions

Functions have been added to greatly favor reuse of scripts. Functions can take input
and can output values, and can be called from any context.

Hastebin

To support easier script writing, MSC 2.0 supports Hastebin. This allows the user to
write scripts in a notepad-like environment, and import the scripts to the server from
there. Exports are also supported.

Var Script Operators

Variable related script operators have been added: @var supports any assignment or
simply an expression. @define supports variable definitions within the local namespace.
@using supports switching namespaces for the rest of the script.

Script Metadata

In order for the user to trace back who the script originally belongs to, how many times
the script has been executed and more metadata, scripts now store metadata to keep
track of sometimes quintessential information while maintaining maps.

Modifications

Variable Typing

Variables are now typed. MSC 2.0 supports built-in types: String, Int, Long, Float,
Double, Player, Block, Entity. Variables are strictly typed, and a String can no longer
be implicitly used as an Int, as was possible before.

Literals

Literals have been modified to support the new built-in types, and automatically change
to the corresponding type. Previously everything was parsed as a String.

@chatscript

Chatscript now only takes a function call as argument, instead of the previously sup-
ported script lines.

75

	Introduction
	Introduction
	Structure
	Notation

	Namespaces
	The Namespace
	Using Namespaces
	Best Practice

	Variables
	Types
	Built-in Types
	Literals

	Qualifiers
	Usage
	Null

	Expressions
	The Expression
	Execution Order
	Short Circuit
	Syntax
	Define
	Var
	String Formatting
	Expression

	Scripts
	Script Operators
	Command Operators
	Branching Operators
	Control Operators
	Variable Operators
	Chat Operators

	Anatomy of Scripts
	Script Types
	Lines
	Parameters

	Commands
	Action
	Type

	Hastebin

	Functions
	The Function
	Parameters
	Return Type

	Syntax
	Definition
	Function Calls

	User defined Types
	User defined Types
	Fields
	Methods
	This keyword

	Constructors

	Examples
	Appendix
	Built-in Namespaces
	system
	math

	Built-in Types
	String
	Int & Long
	Float & Double
	Boolean
	Player
	Entity
	Block
	Item

	Syntax
	Define
	Var
	String Formatting
	Expression
	Time

	Commands
	Namespace
	Variable
	Function
	User Types
	Script

	Scripts
	Script Actions
	Script Types
	Script Operators

	Version History

